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Forecasting Canadian Investment: Replicating and Updating

1 Introduction

In a paper from 2007, Islam utilizes the historical flexible accelerator model (‘FAM’), an empirical

model of aggregate investment and adds time series components.? In 1957, Koyck proposed the

FAM,?

It = Kt −Kt−1 = η[K∗
t −Kt−1]

Where η ∈ (0, 1] and K∗
t is the ‘desired’ level of capital. Essentially, investment each period is

some proportion of the gap between the desired level, and last period’s level of capital. In 1971,

Joregensen showed that you can write the desired level of capital, K∗
t , as a fraction of output, such

that K∗
t = ϕYt.? Rewriting the FAM gives,

It = ηϕYt − ηKt−1

Which I can write in the regression form,

It = β0 + β1Yt + β2Kt−1 + εt (1)

Islam gets their capital and GDP series from Statistics Canada from 1961 to 2000. Both series are

in 1992 constant dollars, and It is derived from the capital formation, It = Kt −Kt−1.

Islam estimates this model, and then estimates an ARIMA model separately for the error term. In

other words, they estimates a MARIMA model, or a regression with ARIMA errors. They specify

an ARIMA(8,0,3) for the FAMs error term εt, or,

(1− ϕ1L− ...− ϕ8L
8)εt = (1 + θ1L+ ...+ θ3L

3)ut (2)
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This paper will replicate their data table to ensure I have similar data, their structural regression

(equation 1), and their MARIMA model (equation 2). Unfortunately, Islam’s forecasting results

are not available directly in the paper, but I will utilize their model to forecast regardless. After

replicating their results, I will construct an additional three forecasting models; a FAM with seasonal

MARIMA errors (‘SMARIMA’), a univariate seasonal ARIMA model (‘SARIMA’), and a VAR

model. I will evaluate these models by their ability to forecast the 2000 to 2004 period.

2 Literature Review

Kopcke, in 1993 used several theoretical, structural models to forecast investment.? In particular,

they used the accelerator model, with the addition of lagged GDP.

It = a+

p∑
i=0

biYt−i + cKt−1

They also used another structural alternative, the neoclassical formation of investment,

It = a+

p∑
i=0

bi
Yt−i

UCCt−i−1
+

p∑
i=0

ci
Yt−i

UCCt−i
+ dKt−1

Where UCC is the user cost of capital. Finally, moving away from structural dynamics, they

considered the simple AR model for investment.

It = a+

p∑
i=1

biIt−i

Their data runs from quarter one 1962 to quarter one 1992. They separately forecast the investment

in equipment and non-residential structures. Concerning equipment, the autoregressive model

outperforms both structural models, with the neoclassical formation outperforming the modified

FAM. Finally, for non-residential structures, the neoclassical model nearly outperforms the AR

models in some subsamples but can perform relatively poorly in others. For instance, in a quarter

one 1978 to quarter one 1992 sample, the accelerator model outperforms the neoclassical method,
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while both fail to outperform the AR model.

This paper demonstrates that good structural models can compete with simple time series models.

However, the definition of capital, and the sample period used can change how well each structural

model performs. In contrast, time series methods do not seem to fluctuate as much concerning

capital and sample period definition.

3 Data

To properly replicate Islam’s paper, I must replicate their capital, GDP, and investment series.

As outlined in their data section, they use ‘the business and government fixed capital formation,’

at ‘1992 constant prices.’ I obtained these series from Statistics Canada and summed them to get

my capital series.? From their graphs of the series, they are not seasonally adjusted, so I take the

unadjusted form as well. The options for prices are 2012 chained dollars and current prices. It

is possible that at the time of this paper’s release in 2007, there was a 1992 chained dollars (or

equivalent) option present. However, since this is not the case now, I will use nominal prices and

manually put them in 1992 dollars.

I use the expenditure-based GDP at final market prices, unadjusted, as my GDP series.? Similar

to the capital stock series, the options provided are 2012 chained dollars or nominal prices, and

again I take the nominal series and convert it manually to 1992 dollars.

Since I derive investment from the capital series, I have the two series I need, and I need to

put them in 1992 dollars. Since they say ‘1992 dollars’, I looked for annual price indices. I found

one for all items, with 1992 as the base year.? This initially seemed the most promising, so I used
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this CPI to normalize GDP and capital to 1992 prices. However, when I proceeded to replicate

summary statistics, these series differed from the series present in Islam’s paper. I denote this

nominal to real conversion as ‘method one.’

There are many subsections of business and government capital formation. Subcategories include

construction, machinery and equipment, and intellectual property. No combination of these subsections

performed exceptionally well using method one. Therefore, I considered alternative price indices.

In particular, Statistics Canada’s implicit price index for GDP and government and business fixed

capital formation.? These series are quarterly and do not have 1992 as the base year. To convert the

base year, I computed the average CPI for 1992, divided the series’ by this average, and multiplied

by 100. I denote using individual, implicit price indices as method two.

4 Presentation of Replication Results

To properly replicate Islam’s paper, my series must represent theirs. Therefore, I begin by replicating

their summary statistics. Table 1 presents the mean and standard deviation for each series for each

ten-year subsample. The table includes the values from Islam’s original paper and the values from

my series, using both method one and method two to convert to real terms.

Regarding proximity to the original paper for GDP, method two seems to outperform method

one consistently. Likewise, method two provides a much better series of capital. However, it is

still consistently off by approximately 3000 but is relatively close in the 90s, as is method one.

Investment is tricky, as method 2 matches the data well in the 70s but performs relatively poor

elsewhere, particularly in the 90s (where capital did well).
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Summary Statistic Time Period Original Paper Method 1 Method 2

GDP (SD GDP) 72495.82
(11300.71)

74183.45
(13244.06)

75552.81
(11877.53)

Capital (SD Capital) 1961-1970 10592.23
(1962.95)

16843.85
(3581.05)

13729.85
(2686.80)

Investment (SD Investment) 176.36
(1300.61)

327.96
(2153.81)

257.80
(1654.50)

GDP (SD GDP) 114707.45
(14390.64)

125807.37
(20433.50)

118527.86
(16285.85)

Capital (SD Capital) 1971-1980 17536.90
(3244.56)

28885.74
(5867.75)

21595.51
(3705.57)

Investment (SD Investment) 261.53
(2196.21)

399.73
(4435.10)

248.78
(2789.00)

GDP (SD GDP) 155196.68
(16757.47)

165647.12
(15872.83)

158875.22
(15601.76)

Capital (SD Capital) 1981-1990 27640.33
(4978.39)

36508.51
(4924.83)

30804.38
(4753.59)

Investment (SD Investment) 211.63
(3006.45)

179.2
(4502.04)

313.39
(3239.88)

GDP (SD GDP) 196561.90
(19704.60)

197943.23
(17835.49)

197113.23
(17552.01)

Capital (SD Capital) 1991-2000 37171.68
(6917.33)

38895.34
(4708.39)

38465.37
(4717.14)

Investment (SD Investment) 493.98
(3343.22)

78.53
(3766.90)

210.38
(3442.69)

Table 1: Mean and standard deviations of relevant series. Data sources come from original paper, and my own using two

different price indices. Capital stock is the sum of government and business fixed capital formation, and GDP is expenditure

based GDP, both in 1992 prices. Investment is derived as the change in capital. Method one uses an all item CPI. Method two

uses GDP and capital specific CPIs.

Overall, method two tends to perform better. While both series get close for capital and GDP in

the 90s, method two is more consistently close in the other subperiods and in investment.

Since method one performs poorly, I think it is unlikely that Islam obtained these series in nominal

terms and put them in real terms himself. Instead, I believe when Islam wrote the paper in 2007,

these series were available in 1992 dollars of some form. These 1992 dollars, similar to method two,
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Investment

(Original Paper) (Method One) (Method Two)

Intercept −4649.21∗∗∗ 2621.900∗∗∗ −2717.976∗∗∗
(661.8) (739.426) (465.319)

Yt 0.148∗∗∗ 0.144∗∗∗ 0.211∗∗∗
(0.015) (0.013) (0.013)

Kt−1 −0.655∗∗∗ −0.756∗∗∗ −1.004∗∗∗
(0.068) (0.063) (0.062)

R2 0.378 0.486 0.636
DW 1.58 1.39 1.22
F Statistic 47.08∗∗∗ 71.928∗∗∗ 132.763∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: OLS results of equation 1. Yt is GDP in 1992 dollars, Kt−1 is lagged fixed capital formation in 1992 dollars. DW is
the Durbin-Watson statistic. Method one uses an all-item CPI, and method two uses a item-specific CPI.

would be uniquely weighted and not based on an overall, all-item type index as used in method one.

Next, I replicate their OLS model, and table 2 presents the results. Here method one performs

quite well to match coefficients on the series but has a large, positive intercept. Method two

does not match the coefficients as well but does have the large negative intercept from Islam’s

model. However, the coefficient on Kt−1 in method two suggests that η = 1.004, which exceeds

its theoretical bounds. In methods one and two, both capital and GDP are the same nominal

series and differ only in their conversion to real terms. This seemingly small difference has led

to a significant difference in their estimation regarding the intercept. Overall, it is unclear which

data performs better. Method two provides a better intercept but estimates parameters exceeding

their theoretical bounds, and method 2 provides parameters in their theoretical bounds, but with

a positive intercept.
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Investment

(Original Paper) (Method 1) (Method 2)

Intercept −5631.08∗∗∗ 1906.707 −1650.8129∗∗∗
(677.42) (2498.111) (862.570)

Kt−1 −0.7167∗∗∗ −0.8844∗∗∗ −0.5998∗∗∗
(0.070) (0.1144) (0.2400)

Yt 0.16587∗∗∗ 0.1755∗∗∗ 0.1270∗∗∗
(0.0159) (0.0234) (0.0495)

ϕ1 0.0805 −0.0139 −0.0473

ϕ2 0.4572 0.3387 0.2624

ϕ3 −0.1332 0.0113 −0.1806

ϕ4 0.6664 0.8161 0.6439

ϕ5 −0.0889 −0.0460 −0.0630

ϕ6 −0.4401 −0.3825 −0.3627

ϕ7 0.1155 −0.0531 0.0658

ϕ8 0.2836 0.1131 0.2263

θ1 0.5285 0.8147 0.3924

θ2 0.1225 0.5477 0.1661

θ3 0.5685 0.4276 0.4474

R2 0.935 0.978 0.973

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: MARIMA(8,0,3) results for original author (Islam), and two replicating data sets. Method 1 uses an all-item CPI to
normalize prices to 1992 dollars. Method 2 utilizes an item-specific CPI. No standard errors are given for the ARMA parameters,
as they are not provided in the original paper.
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Islam’s coefficients for their MARIMA(8,0,3) model are presented in table 3, along with my

coefficients for the same model, using method one and method two. Method two performs better

here, as the introduction of the ARIMA errors brings coefficients closer to the original paper, except

for the intercept, which moves in the opposite direction as their.1 For the most part, both methods

get reasonably close to the original paper concerning the ARIMA coefficients. Overall, method two

once again outperforms method one.

5 Presentation of New Results

For this section, I will be strictly using the method 2 dataset, as it has outperformed method

one for the most part, and is therefore more representative of the data Islam had. I present 3 new

forecasting models. First, I estimate a MARIMA model with seasonal components in the error term

(‘SMARIMA’), then a univariate seasonal model (‘SARIMA’), and finally a VAR model. Sections

5.1 through 5.2 discuss the model estimation procedure, and section 5.3 presents forecasting results.

5.1 Seasonal Models

Since Islam utilizes seasonally unadjusted data, the most natural extension is to add seasonal

terms to their MARIMA model (‘SMARIMA’). Given the quarterly frequency of my data, the

SMARIMA(p,d,q)(P,D,Q)s model for my regressions error term, εt, can be written as,

ϕp(B)︸ ︷︷ ︸
AR

ΦP (B
4)︸ ︷︷ ︸

SAR

(1−B)d︸ ︷︷ ︸
Differencing

(1−B4)D︸ ︷︷ ︸
Seasonal Diff.

εt = θq(B)︸ ︷︷ ︸
MA

ΘQ(B
4)︸ ︷︷ ︸

SMA

ut (3)

I used a cross-validated exhaustive search to select the appropriate SMARIMA model orders. I set

the max order for p and q to five, P and Q to two, and d and D to one.2 Models were trained

on the 1961 to 1999 dataset and forecasted five years, from 2000 to 2004. I obtained the squared
1IE, my intercept gets closer to zero and their gets further from zero.
2Therefore, I trained and tested 62 ∗ 32 ∗ 22 = 1296 models.
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residuals between these forecasts and the actual value for each model and computed their mean

squared error. The model with the lowest mean squared error, a SMARIMA(0,0,0)(1,1,1)4 model,

was selected as the optimal model. Interestingly, cross-validation selected no non-seasonal ARIMA

parameters. Instead, the model seems focused on removing seasonal effects from the error term.

Utilizing the same procedure as above, I performed exhaustive search cross-validation to determine

the optimal univariate seasonal ARIMA (‘SARIMA’) investment model. This formulation is functionally

identical to equation 3 but uses SARIMA parameters on the investment itself, not on a linear

regressions error term,

ϕp(B)ΦP (B
4)(1−B)d(1−B4)DIt = θq(B)ΘQ(B

4)εt

Cross-validation chose the SARIMA(0,1,1)(0,1,1)4 model, with no AR parameters selected. However,

this model selects non-seasonal differencing and seasonal differencing. This is particularly interesting

since It is already a differenced series, It = Kt −Kt−1.

5.2 VAR Model

Each VAR is estimated equation by equation via OLS. There is perfect multicollinearity in the

investment equation with both capital and investment present.

It = Γ11 It−1︸︷︷︸
=Kt−1−Kt−2

+...+ Γ21Kt−1 + Γ22Kt−2 + ...

There is no multicollinearity under equation (1), but adding lagged values of investment and capital

introduces this issue. Therefore, I remove capital and instead only use investment and GDP to

construct the VAR. The AIC and BIC select 8 and 5 lags, respectively, using in-sample selection

criteria to determine the optimal lag length.
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However, as an alternative and given how I determined the optimal models in section 5.1, I also

used cross-validation as a criterion to select the optimal lag length. Since the data is not seasonally

adjusted, I added seasonal dummies. However, the best model with seasonal dummies had a mean

squared error approximately 100,000 higher than the best model without seasonal dummies. I

seasonally differenced the data and reran this model, both with and without seasonal dummies.

These two models did not provide any increases in mean squared error and were therefore not

utilized.

I trained a VAR(1) through VAR(10) on the 1961 to 1999 dataset, forecasted five years, and

calculated mean squared errors. Figure 1 presents the mean squared error for each lag order.3

Cross-validation selects the VAR(6) model. The VAR(6) has a noticeably smaller mean squared

error than the VAR(5), 739321.8 versus 817940.0. Therefore, I select the VAR(6) model as

my optimal model since I care primarily about forecasting ability. The VAR(5) model is more

parsimonious than the VAR(6), but the VAR(6) has more predictive power.

Finally, to make gains over the univariate case, GDP should be useful in helping predict investment.

I can test the usefulness of GDP in predicting investment by a Granger-causality test. Theoretically,

GDP should help predict investment, as investment is a portion of output due to the national

accounting identity.
3Note this was not done for models in section 5.1, as they were varying across multiple dimensions, and the optimal

VAR only varies along one.
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Figure 1: Mean squared error for the VAR(1) through VAR(10) model. Model is trained on the 1961-1999 data and mean

squared error is calculated on its forecasts of 2000-2004. Lowest mean squared error is given by the VAR(6) model.

Granger Causality Test

F-Statistic p-value

H0: GDP does not 3.8443 0.002199
Granger-cause investment

Table 4: Granger causality test for the null hypothesis that GDP does not granger cause investment. Results come from the
estimated VAR(5) model with GDP and investment as the only two variables.

Table 4 presents the results that GDP granger-causes investment. I reject the null hypothesis that

GDP does not Granger-cause investment at the 99% significance level. Therefore, GDP should

add predictive power to my VAR investment forecast and should ideally provide gains over the

univariate case.
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5.3 Forecasting Results

Figure 2: Forecasted values of investment for 2000 to 2004. SARIMA is a univariate seasonal ARIMA model. SMARIMA

is a regression of GDP and lagged capital on investment, with seasonal ARIMA errors. VAR is a bivariate VAR model with

investment and GDP.

Figure 2 presents the test sample forecast results for the SARIMA, SMARIMA, and VAR models.4

All models tend to match the overall cycle quite well, with the VAR having the lowest mean

squared error. The most significant difference between the models and the observed data is their

forecasts for quarters three and four. The observed investment value follows a steep cycle, whereas

the models have ‘hitches’ in the third and fourth quarter, most noticeably in the SMARIMA model.

Since the models seem to predict certain quarters accurately, table 5 presents quarterly specific

mean squared errors. The SARIMA model outperforms the VAR in quarter two, but the VAR
4Islam’s MARIMA model is omitted as it performs poorly and makes the figure hard to read.
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outperforms the SARIMA model in all other quarters. There is no quarter where the SMARIMA

model outperforms the VAR or SARIMA models. Islam’s model gives more accurate forecasts in

quarter four than any other model besides the VAR but performs significantly worse than all other

models in other quarters.

Forecast Type Q1 MSE Q2 MSE Q3 MSE Q4 MSE MSE Total

MARIMA 7,048,325.7 25,964,924.7 10,024,485.0 1,221,837.6 11,064,893.2

SMARIMA 2,990,832.0 2,133,007.3 1,522,193.9 2,581,725 2,306,939.8

SARIMA 456,815.1 599,838.9 927,183.6 1,648,173 908,002.7

VAR 401,249.4 1,150,672.7 730,928.7 674,436.2 739,321.8

Table 5: Mean squared errors for several forecast models, for a given quarter of the testing period. Testing period runs from

2000 to 2004. MARIMA is the original authors model, and the other three are alternative methods formulated in this paper.

Diebold-Mariano Tests

DM Statistic p-value

H0: VAR is as -1.0145 0.1616
good as SARIMA

H0: VAR is as -4.5368 0.0001128
good as SMARIMA

H0: VAR is as -3.7348 0.0007019
good as MARIMA

H0: SMARIMA is as -3.1938 0.00239
good as MARIMA

H0: SARIMA is as -3.5501 0.001069
good as MARIMA

Table 6: Results from the Diebold-Mariano test comparing forecasting accuracy from several models. Squared errors are used
in the loss functions. One sided hypothesis are conducted. This tests if method 2 is less accurate than method 1. Method 1 is
the first model presented in each null hypothesis.
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To test each model’s predictive power, I obtain a vector of residuals from each model to perform

the Diebold-Mariano (DM) test.5 The DM test compares forecast accuracy between two models to

determine if one model has more predictive power than the other. Table 6 presents the results of

several DM tests. From these tests, I conclude that the bivariate VAR model is not better than the

SARIMA model. Even though the VAR model has a mean squared error approximately 160,000

lower, it does not significantly outperform the univariate method.

Each alternative method formulated in this paper outperforms Islam’s MARIMA model in terms

of predictive power. In particular, just adding seasonal components to get the SMARIMA model

leads to a significantly better model. However, it is possible that due to data differences, their

MARIMA model might have fit their dataset better than it fits mine. Therefore, some of these

gains in predictive power might be due to different datasets.

6 Conclusion

I was able to replicate Islam’s results with moderate success. My data series differed, particularly

in earlier periods, which led to differences in my OLS coefficients, but relatively small differences

in my MARIMA coefficients. I hypothesize that the differences between my series are primarily

due to differences in converting from nominal to real terms.

Both models that utilized the structural relationship of the FAM perform worse than pure time series

methods in forecasting ability. This result suggests that the structural relationship is ill-fitting, or

that the time series methods are simply more powerful. Alternative specifications, such as the FAM
5The Diebold-Mariano test provides a more robust result than just observing differences in the mean squared

errors.
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model utilized by Kopcke, might be more appropriate since it added several lags of GDP, which

might add predictive power. Finally, it may be worth abandoning the FAM entirely and using an

alternative model such as the neoclassical, also suggested by Kopcke.

The VAR model could also improve by adding other informative series that explain investment.

One could estimate a form of neoclassical investment in VAR form by adding a series on the user

cost of capital. This series would likely be a powerful predictor, as GDP can be considered income

to spend on investment but the current specification has no information on the costs of investment,

which the user cost of capital would provide.
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